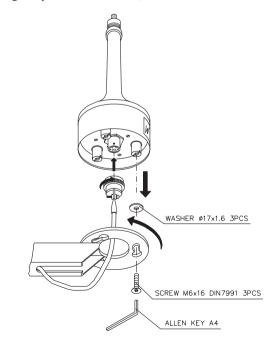

# WAV151 Wind Vane



- Counter-balanced optoelectronic sensor
  - Low inertia and starting threshold
  - Shaft heating for cold environment



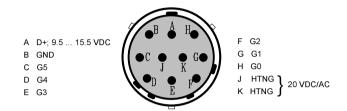
# DESCRIPTION


The WAV151 is a counter-balanced, low-threshold optoelectronic wind vane. Infrared LEDs and phototransistors are mounted on six orbits on each side of a 6-bit GRAY-coded disc. Turned by the vane, the disc creates changes in the code received by the phototransistors. The code is changed in steps of  $5.6^{\circ}$ , one bit at a time to eliminate any ambiguities in the coding. Refer to the output code table on the reverse.

A heating element in the shaft tunnel keeps bearings above the freezing level in cold climates. Nominally it provides 10 W of heating power (14 W in conjunction with the WAA251 Heated Anemometer). It is recommended to use a thermostat switch in the sensor cross arm for switching the heating power on below +4 °C.

The WAV151 complies with the following performance and environmental test standards:

• Wind tunnel tests per ASTM standard method D 5366-93 (for starting threshold, damping ratio, overshoot ratio and delay distance; refer to technical data)


- Exploratory vibration test per MIL-STD-167-1
- Humidity test per MIL-STD-810E, Method 507.3
- Salt fog test per MIL-STD-810E, Method 509.3



# Figure 1. Mounting of wind sensor

# INSTALLATION

The WAV151 is mounted at the northern end of the WAC151 Cross Arm. The installation is safer with the tail removed. Fit the 10-pin cable plug through the mounting flange at the end of the cross arm, then connect it to the sensor. Mount the sensor to the flange by twisting, and tighten the screws.



# Figure 2. WAV151 connector

Usually the WAV151 is used in conjunction with the WAA151 Anemometer. Figure 3 shows the standard wiring in the WAC151 Cross Arm's junction box, when the WAV151 and WAA151 are used. The thermostat switch in the upper left corner is standardly included for temperature control of shaft heating power.

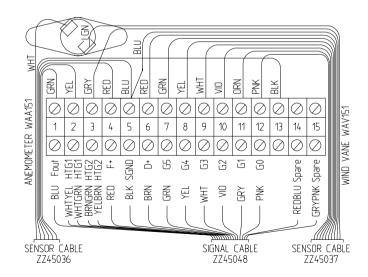



Figure 3. WAC151 Standard Wiring for WAV151 and WAA151

### **TECHNICAL DATA**

| Sensor/Transducer type            | Optical code disc                         |
|-----------------------------------|-------------------------------------------|
| Measuring range                   | 0 360°                                    |
| Starting threshold                | < 0.4 m/s                                 |
| Resolution                        | 5.6°                                      |
| Damping Ratio                     | 0.14                                      |
| Overshoot Ratio                   | 0.65                                      |
| Delay Distance                    | 0.4 m                                     |
| Accuracy                          | better than $\pm 3^{\circ}$               |
| Input power supply                | 9.5 15.5 VDC, 20 mA typical               |
| Heating power supply              | 20 VDC or VAC, 500 mA typical             |
| Output                            | 6-bit parallel GRAY code <sup>1)</sup>    |
| Transducer output level           |                                           |
| $(I_{out} < +5 \text{ mA})$       | High state $> U_{in} - 1.5 V$             |
| $(I_{out}^{I} > -5 \text{ mA})$   | Low state $< 1.5$ V                       |
| Settling time after power turn-on | < 100 µs                                  |
| Electrical connections            | MIL-C-26482 type; 10-wire cable           |
| Operating temperature             | -50 +55 °C (with shaft heating)           |
| Storage temperature               | -60 +70 °С                                |
| Material                          |                                           |
| Housing                           | AlMgSi, grey anodized                     |
| Vane                              | AlSi12, anodized                          |
| Dimensions & Weight               | $300 (h) \times 90 (\emptyset) mm; 660 g$ |
|                                   | Swept radius of vane: 172 mm              |

### <sup>1)</sup> Output from connector pins C...H:

| (°) | Output<br>CDEFGH | (°)  | Output<br>cdefgh | (°)   | Output<br>cdefgh | (°)   | Output<br>cdefgh |
|-----|------------------|------|------------------|-------|------------------|-------|------------------|
| N O | 000000           | E 90 | 011000           | S 180 | 110000           | W 270 | 101000           |
|     |                  | 2 50 |                  | 0 100 |                  |       |                  |
| 6   | 000001           | 96   | 011001           | 186   | 110001           | 276   | 101001           |
| 11  | 000011           | 101  | 011011           | 191   | 110011           | 281   | 101011           |
| 17  | 000010           | 107  | 011010           | 197   | 110010           | 287   | 101010           |
| 23  | 000110           | 113  | 011110           | 203   | 110110           | 293   | 101110           |
| 28  | 000111           | 118  | 011111           | 208   | 110111           | 298   | 101111           |
| 34  | 000101           | 124  | 011101           | 214   | 110101           | 304   | 101101           |
| 39  | 000100           | 129  | 011100           | 219   | 110100           | 309   | 101100           |
| 45  | 001100           | 135  | 010100           | 225   | 111100           | 315   | 100100           |
| 51  | 001101           | 141  | 010101           | 231   | 111101           | 321   | 100101           |
| 56  | 001111           | 146  | 010111           | 236   | 111111           | 326   | 100111           |
| 62  | 001110           | 152  | 010110           | 242   | 111110           | 332   | 100110           |
| 68  | 001010           | 158  | 010010           | 248   | 111010           | 338   | 100010           |
| 73  | 001011           | 163  | 010011           | 253   | 111011           | 343   | 100011           |
| 79  | 001001           | 169  | 010001           | 259   | 111001           | 349   | 100001           |
| 84  | 001000           | 174  | 010000           | 264   | 111000           | 354   | 100000           |

| Spare parts:             | Order number: |  |
|--------------------------|---------------|--|
| Wind tail                | 6386WA        |  |
| Set of bearings & gasket | 16644WA       |  |

Head Office:



VAISALA Oy PL 26, FIN-00421 Helsinki FINLAND Phone (int.): (+358 0) 894 91 Telefax: Telex:

(+358 0) 894 9227 122832 vsala fi

### MAINTENANCE AND REPAIR

Ball bearings must be checked once a year visually and by rotating the sensor shaft. To do this, remove the vane assembly. To ensure proper operation, the shaft should spin smoothly and it should not create any detectable noise.

To replace the ball bearings

Remove the vane assembly. 1

> There are three screws at the vane assembly center. Do not loosen the glue filled screw at the far side. The lockscrew for the vane assembly is the lower one shown in figure 4.

- 2 Loosen the hex nut of the connector (with 27 mm tool). Caution: Bending may break the connector pins!
- 3 Loosen the three pan head screws at the bottom of the sensor body (with 7 mm tool).
- Remove the lower body assembly by pulling it straight out-4 wards.
- 5 Loosen the spacer screws and the heating element outlet.
- Remove the printed circuit board. Do not twist nor bend 6 the connector; bending may break pins.
- 7 Loosen the code disc fixing screw and remove the disc.
- 8 Remove the retaining ring (using narrow-pointed pliers).
- 9 Remove the spacer ring.
- 10 Remove the external retaining ring at the shaft (using narrow-pointed pliers).
- Remove the lower bearing. 11
- 12 Push out the shaft through the upper body.
- 13 Remove the top bearing.

### Be careful when handling the ball bearings.

Reverse work order for assembling the sensor.

The disc must be positioned so that it does not touch the optocoupler at any rotary position of the shaft.

When placing the lower body assembly, make sure that the Oring is correctly positioned between the upper and lower bodies. It is recommended to replace the O-ring by a new one before reassembly.

The heating resistance element cannot be removed without special tools. It is recommended that replacing of the heating element is carried out by the manufacturer.

The wind vane has been counterbalanced at the factory but can be readjusted, if necessary. To do this, loosen the vane assembly and place it on its side on the table. A correctly balanced vane will stay in horizontal position.

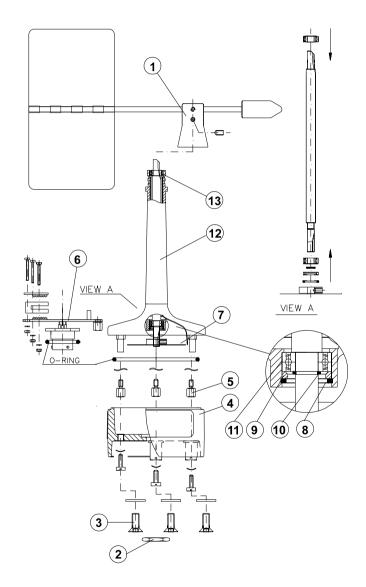



Figure 4. WAV151 assembly

WAV151-U185en-1.1

Ref.